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tive, numerical solution of large-scale eigenvalue problems. Anasazi is written in ANSI C++ and
exploits modern software paradigms to enable the research and development of eigensolver algo-
rithms. Furthermore, Anasazi provides implementations for some of the most recent eigensolver
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Anasazi is a package within the Trilinos Project [Heroux et al. 2005] that uses
ANSI C++ and modern software paradigms to implement algorithms for the numer-
ical solution of large-scale eigenvalue problems. We define a large-scale eigenvalue
problem to be one where a small number (relative to the dimension of the problem)
of eigenvalues and the associated eigenspace are computed and only knowledge of
the underlying matrix via application on a vector (or group of vectors) is assumed.
Anasazi has been employed in a number of large-scale scientific codes, for example,
performing modal analysis in the Salinas structural dynamics code [Bhardwaj et al.
2002] and stability analysis in LOCA [Salinger et al. 2005].

The purpose of this paper is to document and introduce the Anasazi eigensolver
framework to prospective users. These users include practitioners and researchers
in need of efficient, large-scale eigensolvers in a modern programming environment.
This also includes experts who could exploit the framework provided by Anasazi
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as a platform for research and development of new methods for solving eigenvalue
problems. This paper is intended to outline the benefits of Anasazi’s design, as well
as the motivation for those decisions.

An inspiration for Anasazi is the ARPACK [Lehoucq et al. 1998] FORTRAN 77
software library. ARPACK implements a single algorithm, namely an implicitly
restarted Arnoldi method [Sorensen 1992]. In contrast, Anasazi provides a soft-
ware framework, including the necessary infrastructure, to implement a variety of
algorithms. We justify our claims by implementing block variants of three popular
algorithms: a Davidson [Morgan and Scott 1986] method, a Krylov-Schur [Stewart
2001a] method, and an implementation of LOBPCG [Knyazev 2001].

ARPACK has proven to be a popular and successful FORTRAN 77 library for
the numerical solution of large-scale eigenvalue problems. A crucial reason for
the popularity of ARPACK is the use of a reverse communication [Lehoucq et al.
1998, p. 3] interface for applying the necessary matrix-vector products. This allows
ARPACK to provide a callback for the needed matrix-vector products in a simple
fashion within FORTRAN 77. This flexibility has enabled the use of ARPACK in
a wide range of applications, and it is this flexibility that Anasazi was designed to
emulate.

The design goals of Anasazi were multiple. First, implementation of eigensolvers
should be independent from the choice of underlying linear algebra primitives. The
benefit is that the resulting eigensolvers are able to exploit existing software, such
as the wide variety of linear algebra implementations, solvers, and preconditioners
present in Trilinos. This flexibility also eases the incorporation of Anasazi into
larger software libraries and application codes.

Another goal of Anasazi is that abstract interfaces should be utilized wherever
feasible for algorithmic components, so that the implementation of those compo-
nents may be separated from the implementation of the eigensolvers. Many benefits
result from such a decision. This decoupling facilitates code reuse across and outside
of the Anasazi eigensolvers. This underlies Anasazi’s existence as a framework for
developing novel eigensolver capability. This decoupling also increases algorithmic
flexibility. As a result, constituent mechanisms (e.g., orthogonalization routines)
can be chosen at runtime. This cements Anasazi’s usefulness as a framework for re-
search, not only into eigensolvers, but also the components necessary to implement
an eigensolver.

The Anasazi framework accomplishes these design goals by exploiting more re-
cent software development paradigms than available to related eigensolver software.
Both generic and object-oriented programming, via static and dynamic polymor-
phism [Vandevoorde and Josuttis 2002, Chapter 14], are employed to this effect.
Static polymorphism, via templating of the linear algebra primitives, allows algo-
rithms in Anasazi to be written in a generic manner (i.e., independent of the data
types). Dynamic polymorphism, via virtual functions and inheritance, allows eigen-
solvers to be decoupled from constituent mechanisms such as orthogonalization and
stopping conditions.

We emphasize that our interest is not solely in modern software paradigms.
Rather, our paper demonstrates that a rich collection of efficient block eigensolvers
is easily implemented using modern programming techniques. Our approach is
ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.
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algorithm-oriented [Musser and Stepanov 1994], in that requirements for efficient
implementation of the necessary algorithms were considered first. This was followed
by a formulation of the software abstractions capable of implementing these algo-
rithms, and their constituent mechanisms, in sufficiently diverse ways. The result
was a collection of implementations that are both efficient and flexible.

The rest of this paper is organized as follows. Section 1 reviews related software
for solving large-scale eigenvalue problems. Section 2 briefly discusses algorithms
that are implemented in Anasazi, in order to explore the types of operations nec-
essary for an eigensolver framework. Section 3 reviews the Anasazi framework,
discusses some of the design decisions, and illustrates the benefits of these deci-
sions. Lastly, Section 4 provides some timings comparing ARPACK and Anasazi
to demonstrate that object-oriented overhead has negligible impact on the perfor-
mance of this modern software framework.

1. RELATED EIGENSOLVER SOFTWARE

There exist a number of related software efforts for solving large-scale eigenvalue
problems (the reader is referred to [Hernández et al. 2005] for a more complete
survey). We discuss here the ARPACK, IETL, PRIMME and SLEPc software
efforts:

—The Arnoldi Package (ARPACK) is a FORTRAN 77 software for the solution
of Hermitian or non-Hermitian, standard or generalized, eigenvalue problems.
ARPACK implements a single solver, the Implicitly Restarted Arnoldi Method.

—The Iterative Eigensolver Template Library (IETL) is a C++ library which uses
C++ templates to provide a collection of generic eigensolvers. It currently pro-
vides four solvers for standard Hermitian eigenvalue problems.

—The Preconditioned Iterative Multi-Method Eigensolver (PRIMME) [Stathopou-
los and McCombs 2006] is a C library for computing a number of eigenvalues
and the corresponding eigenvectors of a real symmetric or complex Hermitian
matrix. PRIMME provides a highly parametrized Jacobi-Davidson [Sleijpen and
van der Vorst 1996] iteration, allowing the behavior of multiple eigensolvers to
be obtained via the appropriate selection of parameters.

—The Scalable Library for Eigenvalue Problem Computations (SLEPc) [Hernández
et al. 2006] library is another C library for the solution of large scale sparse
eigenvalue problems on parallel computers. SLEPc is an extension of the popular
PETSc [Balay et al. 2001] and can be used for either Hermitian or non-Hermitian,
standard or generalized, eigenproblems.

ARPACK utilizes a reverse-communication interface to access the linear opera-
tors defining the eigenvalue problem. As a result, the eigensolver is implemented
in a partially generic manner, independent of the underlying linear operator, al-
lowing use of the software for many user-defined eigenproblems. A more recent
effort (PARPACK) extends ARPACK to provides a parallel computing capability.
These reasons, along with ARPACK’s maturity, make it the de facto eigensolver in
many scientific computing communities. Unfortunately, the reverse communication
interface makes maintenance of ARPACK a cumbersome task. Furthermore, while
this interface does provide a generic interface for the linear operators, the storage
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of vector data is fixed. In addition to limiting any flexibility in data representation,
this fixed interface results in software which is susceptible to any (albeit unlikely)
design changes in ARPACK.

The IETL software library, like ARPACK, strives to ease use of the software
in diverse applications through a generic interface to operators and vectors. Im-
plemented in C++, IETL achieves this through the language’s template feature.
By utilizing generic interfaces for scalar types, vectors and linear operators, IETL
solvers can be applied to any data structures that adhere to the prescribed ob-
ject model. This allows a single implementation of an eigensolver in IETL to be
exploited across many different programming environments, e.g., real or complex
arithmetic, parallel or serial architecture.

PRIMME provides a single, flexible solver capable of emulating a variety of Her-
mitian eigensolvers. Packaged parameter choices are provided to emulate a number
of popular eigensolvers, allowing easy use of the software by novice users. Expert
users may manually specify the parameters in order to access the full flexibility
available in the solver’s behavior. Therefore, PRIMME is valuable both as a conve-
nient eigensolver for practitioners and a platform for experimentation by eigensolver
researchers. However, while parameters are provided to control mechanisms such
as, e.g., stopping conditions and orthogonalization, the user is limited to the im-
plementations provided by the developers of PRIMME. As a result, the diversity
of behavior in the solver is limited to those options anticipated by the developers.
Furthermore, PRIMME provides implementations only over double precision real
and complex fields. Each additional scalar field (such as float or extended preci-
sion) requires a separate implementation, due to the lack of generic programming
ability in the C programming language.

SLEPc extends the PETSc toolkit to provide a library of solvers for standard or
generalized, Hermitian or non-Hermitian eigenproblems. SLEPc provides wrappers
for several eigensolver packages, most notably ARPACK and PRIMME, as well
as native implementations of eigensolvers like Krylov-Schur, Arnoldi, and Lanc-
zos. PETSc uses C language features such as typedefs and function pointers to
support some generic programming and object-oriented programming techniques,
the goal being interoperability with other software packages. Interoperability with
PETSc gives SLEPc users access to a large library of linear and nonlinear solvers,
preconditioners and matrix formats, though SLEPc’s reliance on PETSc requires
that users employ PETSc for vector storage. Similar to PRIMME, SLEPc can be
compiled with support for double precision real or complex arithmetic. However,
only one version of the library can be used at a time. Furthermore, mechanisms
such as orthogonalization are hard-coded, allowing only parametrized control over
their behavior.

The Anasazi framework was designed to include features from other eigensolver
packages that are conducive to algorithm development, while avoiding some of the
drawbacks mentioned above. The most important features that have been incorpo-
rated into its design are extensibility and interoperability. The extensibility of the
Anasazi framework is demonstrated through the infrastructure’s support for a sig-
nificant class of large-scale eigenvalue algorithms. Extensions can be made through
the addition of, or modification to, existing algorithms and auxiliary functionality
ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.
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such as orthogonalization, desired eigenvalue selection, and stopping conditions.
This is encouraged by promoting code modularization and multiple levels of ac-
cess to solvers and their data. For example, the question of whether to implement
a new solver in PRIMME is a question of whether the PRIMME solver is suffi-
ciently flexible to describe the desired iteration without excessive modification. For
libraries such as SLEPc and IETL, this decision is made based largely on the ex-
isting functionality in the library that can be exploited in a new implementation.
By decoupling eigensolvers from constituent mechanisms, Anasazi allows such func-
tionality to be exploited by new solvers. This is the foundation of extensibility in
Anasazi.

Interoperability in the Anasazi framework is enabled via the treatment of both
matrices and vectors as opaque objects—only knowledge of the matrix and vectors
via elementary operations is necessary. This permits algorithms to be implemented
in a generic manner, requiring no knowledge of the underlying linear algebra types
or their specific implementations. The Anasazi framework was designed to admit
operation with any user choice of scalar field, vector and operator. This is ac-
complished using the template mechanism in the C++ programming language, an
option not available to SLEPc or PRIMME. As a result, for example, an Anasazi
eigensolver using single-precision complex arithmetic can be used alongside another
Anasazi eigensolver using an extended precision scalar type; both would be instan-
tiated from the same source code.

As a result of these design features, the Anasazi eigensolver framework is signifi-
cantly more flexible than previous efforts, easing its inclusion in diverse application
environments in addition to providing an arena for research into eigensolvers and
their constituent mechanisms.

2. ALGORITHMS IN ANASAZI

The Anasazi framework provides tools that are useful for solving a wide variety
of eigenvalue problems. The solvers currently released within Anasazi compute a
partial eigen-decomposition for the generalized eigenvalue problem

Ax = Bxλ, A,B ∈ Cn×n . (1)

We assume that the matrices A and B are large, possibly sparse, and that only their
application to a block of vectors is required. For instance, there is no assumption
that A and B are stored in some sparse matrix format. The reader is referred
to [Saad 1992; Sorensen 2002; Stewart 2001b; van der Vorst 2002] for background
information and references on the large-scale eigenvalue problem.

We now discuss how the block Davidson eigensolver described in [Arbenz et al.
2005] is implemented within Anasazi to solve

Ax = Mxλ, A,M ∈ Cn×n (2)

where A is Hermitian, and M is Hermitian positive definite. Algorithm 1 lists the
salient steps of the block Davidson eigensolver.

The linear operators A and M define the eigenproblem to be solved. The linear
operator N is a preconditioner for the problem, and its application to a block of
vectors is required. Example preconditioners N include the inverse of the diago-
nal of A (Jacobi preconditioner), an algebraic multigrid preconditioner for A, or
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Algorithm 1 Block Davidson Algorithm
Require: Set an initial guess V and H = [].
1: for iter = 1 to itermax do
2: repeat
3: Compute M-orthonormal basis V for [V, H]
4: Project A onto V: Â = VHAV
5: Compute selected eigenpairs (Q, Γ) of Â: ÂQ = QΓ
6: Compute Ritz vectors: X = VQ
7: Compute residuals: R = AX−MXΓ
8: Precondition the residuals: H = NR
9: Check convergence and possibly terminate iteration

10: until the matrix V is not expandable
11: Restart V
12: end for

a preconditioned iteration that approximates the solution of a linear set of equa-
tions with A, e.g., the preconditioned conjugate gradient algorithm. We remark
that with an appropriate choice for N, Algorithm 1 is easily modified in a Jacobi-
Davidson [Sleijpen and van der Vorst 1996] algorithm. We emphasize that the
choice and implementation of N is left to the user.

The dense rectangular matrices V, X, and R are stored as a collection of vectors,
which we call a multivector. The column-vectors for matrix V form the basis for the
Rayleigh-Ritz approximation conducted at Step 5-6. We make the specific choice
that these vectors are orthonormal with respect to the inner product induced by
the Hermitian positive-definite matrix M, but this is not a requirement.

The block Davidson eigensolver as described above is useful for examining some
of the functionality provided by Anasazi. Algorithm 1 highlights three levels of
functionality. The first level is given by Steps 1-12 that constitute the eigensolver
strategy to solve problem (2). The second level is given by Steps 2-10 that form
the eigen-iteration. The third level consists of computational steps that can be
implemented in a variety of manners, so encouraging modularization. Step 3 re-
quires an orthonormalization method. The decisions involved in Step 5 require a
determination of the eigenvalues and invariant subspace of interest, as well as a
definition of accuracy. To check convergence in Step 9, several criteria are possible.
For instance, a norm induced by a matrix other than M may be employed. The
restarting of this eigensolver (Step 11) can be performed in a variety of ways and
therefore need not be tightly coupled to the eigensolver. Each of these mechanisms
provide opportunity for decoupling functionality that need not be implemented in
a specific manner.

Anasazi also implements LOBPCG as described in [Hetmaniuk and Lehoucq
2006] to solve (2). For the more general eigenvalue problem given by (1), Anasazi
implements a block Krylov-Schur [Stewart 2001a] method. This method allows the
use of a linear operator implementing a spectral transformation (e.g., shift-invert).
We remark that a spectral transformation may be implemented in a number of
ways, e.g., via a preconditioned iterative method; this decision resides with the
user.
ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.
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Given these observations, the components that are important to an eigensolver
include:

—multivector operations: creation, projection, right multiplication;
—operator-multivector applications: AX, MX, NR;
—solution of typically much smaller dense eigenproblems;
—a sorting method (for the desired portion of the eigenvalues);
—an orthogonalization method;
—a testing capability to terminate the iteration.

A full list of our primitives for operators and multivectors will be presented in
Section 3.1. Section 3.2 will discuss our treatment of the other components.

This discussion illustrates that many distinct parts make up a large-scale eigen-
solver code. Anasazi presents a framework of algorithmic components, decoupling
operations where possible in order to simplify component verification, encourage
code reuse, and maximize flexibility in implementation.

3. ANASAZI SOFTWARE FRAMEWORK

This section outlines the Anasazi software framework and discusses the design deci-
sions made in the development of Anasazi. Three subsections describe the Anasazi
operator/multivector interface, the eigensolver framework, and the various imple-
mentations provided by the Anasazi framework. The reader is referred to [Baker
et al. ; Sala et al. 2004] for software documentation and a tutorial.

We remark that Anasazi is largely independent of other Trilinos packages and
third-party libraries. However, Anasazi does rely on the Trilinos Teuchos pack-
age [Heroux et al. ] to provide tools such as: RCP, a reference-counting smart
pointer [Detlefs 1992; Bartlett 2004]; ParameterList, a list for algorithmic pa-
rameters of varying data types; and the BLAS [Lawson et al. 1979; Blackford et al.
2002] and LAPACK [Anderson et al. 1999] C++ wrappers. The only third-party
libraries that Anasazi requires are the BLAS and LAPACK libraries, which are
essential in performing the dense arithmetic for Rayleigh-Ritz methods.

3.1 The Anasazi Operator/Multivector Interface

Anasazi utilizes traits classes [Meyers 1995; Veldhuizen 1996] to define interfaces for
the scalar field, multivectors, and matrix operators. This allows generic program-
ming techniques to be used when developing numerical algorithms in the Anasazi
framework. Anasazi’s eigensolver framework (Section 3.2) is comprised of abstract
numerical interfaces that are all implemented using templates and the functionality
of the template arguments is provided through their corresponding trait classes.
Most classes in Anasazi accept three template parameters:

—a scalar type, describing the field over which the vectors and operators are defined;
—a multivector type over the given scalar field, providing a data structure that

denotes a collection of vectors; and
—an operator type over the given scalar field, providing linear operators used to

define eigenproblems and preconditioners.
ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.
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We note that the Anasazi framework was designed to support block methods,
defined as those that apply A or B to a collection of vectors (a multivector). One
advantage of using a multivector data structure is to improve the ratio of floating-
point operations to memory references and so better exploit a memory hierarchy.

Templating an eigensolver on operator, multivector, and scalar types makes soft-
ware reuse easier. Consider in contrast that ARPACK implements the subroutines
SNAUPD, DNAUPD, CNAUPD, and ZNAUPD for solving non-Hermitian eigenproblems.
Separate subroutines are required for each of the four FORTRAN 77 floating point
types (single and double precision real, and single and double precision complex).
Moreover, four additional subroutines are needed for a distributed memory imple-
mentation. By templating abstract numerical interfaces on operator, multivector,
and scalar types, it is only necessary to maintain a single code using the Anasazi
framework.

Fig. 1. An eigensolver templated on scalar (ST), multivector (MV), and operator (OP) type.

Another aspect of software reuse that templating alleviates is through the sep-
aration of the eigensolver algorithm from the linear algebra data structures. This
separation, as shown in Figure 3.1, allows a user of the Anasazi framework to lever-
age any existing linear algebra software investment. All that is required is the
template instantiation of the trait classes, MultiVecTraits and OperatorTraits,
for the user-defined multivector and operator, respectively. The ScalarTraits
class and respective template instantiations for different scalar types are provided
by the Trilinos Teuchos package [Heroux et al. ]. Another friendly aspect of employ-
ing templates and traits mechanisms is that the Anasazi eigensolver, eigenproblem,
and eigensolution are all defined by the specified scalar, multivector, and opera-
tor type at compile time. This approach, as opposed to using abstract interfaces
and dynamic polymorphism, avoids any dynamic casting of the multivectors and
operators in the user’s interaction with the Anasazi framework.

The MultiVecTraits and OperatorTraits classes specify the operations that
the multivector and operator type must support in order for them to be used
by Anasazi. Through the observations made in Section 2, it is clear that the
OperatorTraits class only needs to provide one method, described in Table I, that
applies an operator to a multivector. This interface defines the only interaction
required from an operator, even though the underlying operator may be a matrix,
spectral transformation, or preconditioner.
ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.
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Table I. The method provided by the OperatorTraits interface.

OperatorTraits<ST,MV,OP>

Method name Description

Apply(A,X,Y) Applies the operator A to the multivector X, placing the result
in the multivector Y

Table II. The methods provided by the MultiVecTraits interface.

MultiVecTraits<ST,MV>

Method name Description

Clone(X,numvecs) Creates a new multivector from X with numvecs vectors
CloneCopy(X,index) Creates a new multivector with a copy of the contents of a

subset of the multivector X (deep copy)
CloneView(X,index) Creates a new multivector that shares the selected contents of

a subset of the multivector X (shallow copy)

GetVecLength(X) Returns the vector length of the multivector X
GetNumberVecs(X) Returns the number of vectors in the multivector X

MvTimesMatAddMv(alpha,X, Applies a dense matrix D to multivector X and
D,beta,Y) accumulates the result into multivector Y :

Y ← αXD + βY
MvAddMv(alpha,X,beta,Y) Performs multivector AXPBY: Y ← αX + βY
MvTransMv(alpha,X,Y,D) Computes the dense matrix D ← αXHY
MvDot(X,Y,d) Computes the corresponding dot products: d[i]← x̄iyi

MvScale(X,d) Scales the i-th column of a multivector X by d[i]
MvNorm(X,d) Computes the 2-norm of each vector of X: d[i]← ‖xi‖2
SetBlock(X,Y,index) Copies the vectors in X to a subset of vectors in Y
MvInit(X,alpha) Replaces each entry in the multivector X with a scalar α
MvRandom(X) Replaces the entries in the multivector X by random scalars

MvPrint(X) Print the multivector X

The methods defined by the MultiVecTraits class, listed in Table II, are the
creational and arithmetic methods necessitated by the observations in Section 2.
The creational methods generate empty or populated multivectors from a previously
created multivector. The populated multivectors can be a deep copy, where the
object contains the storage for the multivector entries, or a shallow copy, where the
object has a view of another multivector’s storage. A shallow copy is useful when
only a subset of the columns of a multivector is required for computation, which
is a situation that commonly occurs during the generation of a subspace. All the
creational methods return a reference-counted pointer [Detlefs 1992; Bartlett 2004]
to the new multivector (RCP<MV>).

The arithmetic methods defined by the MultiVecTraits are essential to the com-
putations required by the Rayleigh-Ritz method and the general eigen-iteration.
The MvTimesMatAddMv and MvAddMv methods are necessary for updating the ap-
proximate eigenpairs and their residuals in Steps 6–7 of the Algorithm 1. The
MvDot and MvTransMv methods are required by the orthogonalization procedure
utilized in Step 3 of the eigen-iteration. The MvScale and MvNorm methods are
necessary, at the very least, for the computation of approximate eigenpairs and for
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some termination criteria of the eigen-iteration. Deflation and locking of converged
eigenvectors necessitates the SetBlock method in many cases. Initialization of the
bases for the eigen-iteration requires methods such as MvRandom and MvInit. The
ability to perform error checking and debugging in Anasazi is supported by meth-
ods that give dimensional attributes (GetVecLength, GetNumberVecs) and allow
the users to print out a multivector (MvPrint).

Specialization of the MultiVecTraits and OperatorTraits classes on given tem-
plate arguments is compulsory for their usage in the eigensolver framework. Anasazi
provides the following specializations of these trait classes:

—Epetra MultiVector and Epetra Operator (with scalar type double) allow Anasazi
to be used with the Epetra [Heroux et al. ] linear algebra library provided with
Trilinos. This gives Anasazi the ability to interact with Trilinos packages that
support the Epetra Operator interface, e.g., the Amesos direct sparse solver
package, the AztecOO and Belos iterative linear solver packages, the Ifpack pack-
age of algebraic preconditioners, the ML package for multigrid preconditioners,
and NOX/LOCA package of nonlinear solvers.

—Thyra::MultiVectorBase<ST> and Thyra::LinearOpBase<ST> (with arbitrary
scalar type ST) allow Anasazi to be used with any classes that implement the
abstract interfaces provided by the Thyra [Bartlett et al. ] package of Trilinos.

For scalar, multivector and operator types not covered by the provided specializa-
tions, alternative specializations of MultiVecTraits and OperatorTraits must be
created. One benefit of the traits mechanism is that it does not require that the
data types are C++ classes. Furthermore, the traits mechanism does not require
modification to existing data types; it serves only as a translator between the data
type’s native functionality and the functionality required by Anasazi.

3.2 The Anasazi Eigensolver Framework

In this section we discuss how an eigensolver is implemented in Anasazi’s framework.
We demonstrate that Anasazi is a framework of algorithmic components, where
decoupled operations simplify component verification, encourage code reuse, and
maximize flexibility in implementation. This modularized approach utilizes a solver
manager to define a strategy using these algorithmic components. The high-level
class collaboration graph for Anasazi’s SolverManager class in Figure 3.2 lists all
the algorithmic components offered by the Anasazi framework for implementing an
eigensolver.

The first component that is essential to the SolverManager is the Eigenproblem
class. Eigenproblem is an abstract class that is a container for the components
and solution of an eigenvalue problem. By requiring eigenvalue problems to derive
from Eigenproblem, Anasazi defines a minimum interface that can be expected of
all eigenvalue problems by the classes that will work with these problems. The
methods provided by this interface, shown in Table III, are generic enough to
define an eigenvalue problem that is standard or generalized, Hermitian or non-
Hermitian. Furthermore, this interface allows the definition of a preconditioner, for
preconditioned eigensolvers, as well as the definition of a spectral transformation,
for Arnoldi-based eigensolvers.
ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.
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Fig. 2. SolverManager class collaboration graph.

Table III. A list of methods provided by any derived Eigenproblem.

Eigenproblem<ST,MV,OP>

Method name Description

setOperator() getOperator() Access the operator for which eigenvalues will
be computed

setA() getA() Access the operator A of the eigenvalue prob-
lem Ax = λBx

setB() getB() Access the operator B of the eigenvalue prob-
lem Ax = λBx

setPrec() getPrec() Access the preconditioner for this eigenvalue
problem Ax = λBx

setInitVec() getInitVec() Access the initial guess
setAuxVecs() getAuxVecs() Access the auxiliary vectors
setNEV() getNEV() Access the number of eigenvalues (NEV) that

are requested
setHermitian() isHermitian() Access the symmetry of the eigenproblem
setProblem() isProblemSet() Access whether the eigenproblem is fully de-

fined
setSolution() getSolution() Access the solution to the eigenproblem

From a user’s perspective, the most important part of the interface may be the
methods for storing and retrieving the results of the eigenvalue computation:

const Eigensolution & Eigenproblem::getSolution();
void Eigenproblem::setSolution(const Eigensolution & sol);

The Eigensolution class was developed in order to facilitate setting and retrieving
the solution data from an eigenproblem. Furthermore, the Eigensolution class
was designed for storing solution data from both Hermitian and non-Hermitian
eigenproblems. This structure contains the following information:

—RCP<MV> Evecs
The computed eigenvectors.

—RCP<MV> Espace
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An orthonormal basis for the computed eigenspace.
—std::vector< Value<ST> > Evals

The computed eigenvalue approximations.
—std::vector<int> index

An index scheme enabling compressed storage of eigenvectors for non-Hermitian
problems.

—int numVecs
The number of computed eigenpair approximations.

The Eigensolution::index vector has numVecs integer entries that take one of
three values: {0,+1,−1}. These values allow the eigenvectors to be retrieved as
follows:

—index[i]==0: The i-th eigenvector is stored uncompressed in column i of Evecs.
—index[i]==+1: The i-th eigenvector is stored compressed, with the real compo-

nent in column i of Evecs and the positive complex component stored in column
i + 1 of Evecs.

—index[i]==-1: The i-th eigenvector is stored compressed, with the real compo-
nent in column i − 1 of Evecs and the negative complex component stored in
column i of Evecs.

The compressed storage scheme is necessary to efficiently store the (potentially)
complex eigenvectors of a non-symmetric eigenproblem when the multivectors are
defined over a real field. This scheme enables Anasazi to use numVecs vectors to
store numVecs eigenvectors, even when complex conjugate pairs are present. All
other eigenproblems (real symmetric, complex Hermitian or non-Hermitian) will
return an index vector composed entirely of zeroes, as compression of complex
eigenvectors is not an issue.

The Value structure is a simple container, templated on scalar type, that has two
members: the real and imaginary part of an eigenvalue. The real and imaginary
parts are stored as the magnitude type of the scalar type. The Value structure
along with the index vector enable the Eigensolution structure to store the solu-
tions from either real or complex, Hermitian or non-Hermitian eigenvalue problems.
Implementations of the SolverManager class are expected to place the results of
their computation in the Eigenproblem class using an Eigensolution.

The second component that is essential to a SolverManager is the Eigensolver
class. The Eigensolver abstract base class defines the basic interface that must
be met by any eigen-iteration class in Anasazi. A derived class will define two
types of methods: status methods and solver-specific methods. A list of these
methods is given in Table IV. The status methods are defined by the Eigensolver
abstract base class and represent the information about the iteration status that
can be requested from any eigensolver. Each eigensolver iteration also provides
low-level, solver-specific methods for accessing and setting the state of the solver.
An eigensolver’s state is stored in a solver-specific structure and is expected to fully
describe the current state of the solver or the state the solver needs to be initialized
to. A simple example of a state structure can be seen in Figure 3.

The eigensolver iterations implemented using the Eigensolver class are generic
iteration kernels that do not have the intelligence to determine when to stop the
ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.
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Table IV. A list of methods provided by any derived Eigensolver.

Eigensolver<ST,MV,OP>

Status Methods

Method name Description

getNumIters() current iteration
getRitzValues() current Ritz values
getRitzVectors() current Ritz vectors
getRitzIndex() Ritz index needed for indexing compressed

Ritz vectors
getResNorms() residual norms, with respect to the

OrthoManager inner product
getRes2Norms() residual Euclidean norms
getRitzRes2Norms() Ritz residual Euclidean norms
getCurSubspaceDim() current subspace dimension
getMaxSubspaceDim() maximum subspace dimension
getBlockSize() block size

Solver-specific Methods

Method name Description

getState() returns a specific structure with read-only
pointers to the current state of the solver.

initialize() accepts a solver-specific structure enabling the
user to initialize the solver with a particular
state.

iterate() performs eigen-iteration until the status test
indicates the need to stop or an error occurs.

template <class ST, class MV>

struct SomeEigensolverState {

/* The current dimension of the subspace. *

* NOTE: This should be equal to SomeEigensolver::getCurSubspaceDim(). */

int curDim;

/* The current subspace. */

RCP<const MV> V;

/* The current Rayleigh-Ritz projection */

RCP<const Teuchos::SerialDenseMatrix<int,ST> > H;

};

Fig. 3. Example of an Eigensolver state structure.

iteration, what the eigenvalues of interest are, which output to send and to where, or
how to orthogonalize the basis for a subspace. The intelligence to perform these four
tasks is, instead, provided by the StatusTest, SortManager, OutputManager, and
OrthoManager objects, which are passed into the constructor of an Eigensolver
(Figure 4). This allows each of these four tasks to be modified without affecting
the basic eigensolver iteration. When combined with the status and state-specific
Eigensolver methods, this provides the user with a large degree of control over
eigensolver iterations.

The abstract StatusTest class is used to provide the interface for stopping con-
ditions for an eigen-iteration. There are numerous conditions under which an eigen-
iteration should be stopped, with the most common conditions being the number
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Eigensolver(

const RCP< Eigenproblem<ST,MV,OP> > &problem,

const RCP< SortManager<ST,MV,OP> > &sorter,

const RCP< OutputManager<ST> > &printer,

const RCP< StatusTest<ST,MV,OP> > &tester,

const RCP< OrthoManager<ST,OP> > &ortho,

ParameterList &params

);

Fig. 4. Basic constructor for an Eigensolver

of iterations, convergence criterion, and the deflation strategy for converged eigen-
pairs. Often the decision to stop an eigensolver iteration is based on a hierarchy of
problem-dependent, logically connected stopping conditions. This, possibly com-
plex, reasoning should not be encoded in the Eigensolver class, which instead
queries the StatusTest during its class method iterate() to determine whether
or not to continue iterating (Figure 5). The StatusTest class provides a method,

SomeEigensolver::iterate() {

while ( myStatusTest.checkStatus(this) != Passed ) {

//

// perform eigensolver iterations

//

}

return; // return back to caller

}

Fig. 5. Example of communication between status test and eigensolver

checkStatus(), which queries the methods provided by Eigensolver and deter-
mines whether the solver meets the criteria defined by the status test. After a solver
returns from iterate(), the caller has the ability to access the solver’s state and
the option to re-initialize the solver with a new state and continue the iteration.

A StatusTest is a desirable feature in the Anasazi software framework because
it provides the eigensolver user and developer with a flexible interface for interro-
gating the eigen-iteration. Besides the basic usage, this interface makes it possible
to, for example, select stopping conditions at runtime or put application-specific
hooks in the eigensolver for debugging and checkpointing. This flexible approach
to selecting and developing stopping criteria for an eigensolver is not available in
PRIMME or SLEPc. Since an ARPACK user provides the memory for computa-
tions and ARPACK is constantly returning control via the reverse communication
mechanism, the user has some ability to examine the current state and modify it
to force certain behavior. However, this is an advanced use case which requires
intimacy with the formatting of the ARPACK control data.

The purpose of the SortManager class is to separate the Eigensolver from
the sorting functionality, giving users the opportunity to choose the eigenvalues of
interest in whatever manner is deemed to be most appropriate. Anasazi defines an
abstract class SortManager with two methods, one for sorting real values and one
ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.
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for sorting complex values, shown in Figure 6. The SortManager is also expected
to provide the permutation vector if the Eigensolver passes a non-null pointer for
perm to the sort method. This is necessary, because many eigen-iterations must
sort their approximate eigenvectors, as well as their eigenvalues.

// Sort n real values stored in evals and return permutation, if required, in perm.

void sort(Eigensolver<ST,MV,OP>* solver,

const int n,

std::vector<typename Teuchos::ScalarTraits<ST>::magnitudeType> &evals,

std::vector<int> *perm)

// Sort n complex values, whose real and imaginary part are stored in r_evals

// and i_evals, respectively. Return permutation, if required, in perm.

void sort(Eigensolver<ST,MV,OP>* solver,

const int n,

std::vector<typename Teuchos::ScalarTraits<ST>::magnitudeType> &r_evals,

std::vector<typename Teuchos::ScalarTraits<ST>::magnitudeType> &i_evals,

std::vector<int> *perm)

Fig. 6. A list of methods provided by any derived SortManager.

Since orthogonalization and orthonormalization are commonly performed com-
putations in iterative eigensolvers and can be implemented in a variety of ways,
the OrthoManager class separates the Eigensolver from this functionality. The
OrthoManager defines a small number of orthogonalization-related operations, in-
cluding a choice of an inner product, which are listed in Table V. The OrthoManager
interface has also been extended, through inheritance, to support orthogonalization

Table V. A list of methods provided by any derived OrthoManager.

OrthoManager<ST,MV>

Method name Description

innerProd(X,Y,Z) Provides the inner product
norm(X,normvec) Provides the norm induced by the inner prod-

uct
project(X,Q,C) Projects the multivector X onto the subspace

orthogonal to the multivectors Q, optionally
returning the coefficients of X with respect to
the Q.

normalize(X,B) Computes an orthonormal basis for the multi-
vector X, optionally returning the coefficients
of X with respect to the computed basis.

projectAndNormalize(X,Q,C,B) Projects the multivector X onto the subspace
orthogonal to the multivectors Q and com-
putes an orthonormal basis (orthogonal to the
Q) for the resultant, optionally returning the
coefficients of X with respect to the Q and the
computed basis.

and orthonormalization using matrix-based inner products in the MatOrthoManager
class. This extended interface allows the eigen-iteration to pass in pre-computed
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matrix-vector products that can be used in the orthogonalization and orthonormal-
ization process, thus making the computation more efficient.

The Eigensolver class combined with the utilities provided by the StatusTest,
SortManager, and OrthoManager classes provides a powerful, flexible way to design
an eigen-iteration. However, directly interfacing with the Eigensolver class can be
overwhelming, since it requires the user to construct a number of support classes
and manage calls to Eigensolver::iterate(). The SolverManager class was
developed to encapsulate an instantiation of Eigensolver, providing additional
functionality and handling low-level interaction with the eigensolver iteration that
a user may not want to specify.

Solver managers are intended to be easy to use, while still providing the features
and flexibility needed to solve large-scale eigenvalue problems. The SolverManager
constructor accepts only two arguments: an Eigenproblem specifying the eigen-
value problem to be solved and a ParameterList of options specific to this solver
manager. The solver manager instantiates an Eigensolver implementation, along

SolverManager(

const RCP< Eigenproblem<ST,MV,OP> > &problem,

ParameterList &params

);

Fig. 7. Basic constructor for a SolverManager

with the status tests and other support classes needed by the eigensolver iteration,
as specified by the parameter list. To solve the eigenvalue problem, the user simply
calls the solve() method of the SolverManager, which returns either Converged or
Unconverged, and retrieves the computed Eigensolution from the Eigenproblem
(Figure 8).

// create an eigenproblem

RCP< Anasazi::Eigenproblem<ST,MV,OP> > problem = ...;

// create a parameter list

ParameterList params;

params.set(...);

// create a solver manager

Anasazi::SolverManager<ST,MV,OP> solman(problem,params);

// solve the eigenvalue problem

Anasazi::ReturnType ret = solman.solve();

// get the solution from the problem

Anasazi::Eigensolution<ST,MV> sol = problem->getSolution();

Fig. 8. Sample code for solving an eigenvalue problem using a SolverManager

The simplicity of the SolverManager interface often conceals a complex eigen-
solver strategy. The purpose of many solver managers is to manage and initiate
the repeated calls to the underlying Eigensolver::iterate() method. For solvers
that increase the dimension of trial and test subspaces (e.g., Davidson and Krylov
subspace methods), the solver manager may also assume the task of restarting (so
ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.
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that storage costs may be fixed). This decoupling of restarting from the eigensolver
is beneficial due to the numerous restarting techniques in use.

Under this framework, users have a number of options for performing eigenvalue
computations with Anasazi:

—Use the existing solver managers, which we will discuss in the next section. In
this case, the user is limited to the functionality provided by the existing solver
managers.

—Develop a new solver manager for an existing eigensolver iteration. The user
can extend the functionality provided by the eigen-iteration, specifying custom
configurations for status tests, orthogonalization, restarting, locking, etc.

—Implement a new eigensolver iteration, thus taking advantage of Anasazi’s ex-
tensibility. The user can write an eigensolver iteration that is not provided by
Anasazi. The user still has the benefit of the available support classes and the
knowledge that this effort can be easily employed by anyone already familiar with
Anasazi.

In the next section we will discuss the current implementations of eigensolver iter-
ations and managers, as well as utility classes, provided by the Anasazi eigensolver
framework.

3.3 Anasazi Class Implementations

Anasazi is an eigensolver software framework designed with extensibility in mind,
so that users can augment the package with any special functionality that may
be needed. However, the released version of Anasazi provides all functionality
necessary for solving a wide variety of problems. This section lists and briefly
describes the class implementations provided by Anasazi.

3.3.1 Anasazi::Eigenproblem. The Eigenproblem class describes an inter-
face for encapsulating the information necessary to define an eigenvalue prob-
lem. Anasazi provides users with a concrete implementation of Eigenproblem,
called BasicEigenproblem. This basic implementation contains the matrices and
functionality necessary to describe generalized and standard, Hermitian and non-
Hermitian linear eigenvalue problems. A user may specify the A and B operators
defining the eigenvalue problem, a preconditioner and a spectral transformation.
The user also may specify the symmetry of the problem, as well as the number of
eigenvalue that should be computed.

3.3.2 Anasazi::Eigensolver. The Eigensolver class is intended to capture
only the essential steps of an eigensolver iteration, capturing the second level of
functionality discussed in Section 2. For example, the BlockDavidson class de-
scribes only Steps 2–10 of Algorithm 1. Anasazi provides concrete implementations
for the iterations associated with the following three methods:

(1) a block extension of a Krylov-Schur method [Stewart 2001a],
(2) a block Davidson method as described in [Arbenz et al. 2005],
(3) an implementation of LOBPCG as described in [Hetmaniuk and Lehoucq 2006].

These implementations can be found in the BlockKrylovSchur, BlockDavidson,
and LOBPCG classes, respectively. We recall that the user must still specify the
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SortManager, OutputManager, StatusTest, and OrthoManager objects, which are
passed into the constructor of Anasazi::Eigensolver. Only the block Krylov-
Schur method can be used for non-Hermitian generalized eigenvalue problems. In
contrast, all three algorithms can be used for symmetric positive semi-definite gen-
eralized eigenvalue problems.

3.3.3 Anasazi::SolverManager. Anasazi provides solver managers to imple-
ment a strategy for solving an eigenvalue problem. At the heart of each strategy
is the iteration encapsulated in an Eigensolver object. Solver managers therefore
fulfill the highest level of functionality involved in the solution of an eigenvalue
problem. For example, the BlockDavidsonSolMgr class describes Steps 1–12 of
Algorithm 1.

As described in Section 3.2, a solver manager instantiates an underlying Eigen-
solver object and all the components required to construct this Eigensolver
object (SortManager, OutputManager, StatusTest, and OrthoManager objects).
The solver manager may also contain additional functionality. For example, for the
block Davidson algorithm, the outer loop and Step 11 of Algorithm 1 are imple-
mented in the BlockDavidsonSolMgr class.

The current solver managers are:

—BlockKrylovSchurSolMgr - a solver manager that implements the block Krylov-
Schur algorithm with restarting. When the block size is one, this Krylov-subspace
method is mathematically equivalent to the implicitly-restarted Arnoldi method
in ARPACK.

—BlockDavidsonSolMgr - a solver manager that implements the block Davidson
algorithm with restarting and locking/deflating mechanisms of converged eigen-
vectors.

—LOBPCGSolMgr - a solver manager that implements the LOBPCG algorithm with
a locking/deflating mechanism of converged eigenvectors.

3.3.4 Anasazi::StatusTest. The purpose of the StatusTest is to give the
user or solver manager flexibility in terminating the eigensolver iterations in order
to interact directly with the solver. Typical reasons for terminating the iteration
are:

—some convergence criterion has been satisfied;
—some portion of the subspace has reached sufficient accuracy to be deflated from

the iterate or locked;
—the solver has performed a sufficient number of iterations.

With respect to these reasons, the following is a list of Anasazi-provided status
tests:

—StatusTestMaxIters - monitors the number of iterations performed by the
solver; it can be used to halt the solver at some maximum number of iterations
or even to require some minimum number of iterations;

—StatusTestResNorm - monitors the residual norms of the current iterate;
—StatusTestCombo - a boolean combination of other status tests, creating unlim-

ited potential for complex status tests;
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—StatusTestOutput - a wrapper around another status test, allowing for printing
of status information on a call to checkStatus().

3.3.5 Anasazi::SortManager. The purpose of the SortManager is to give users
the opportunity to choose the eigenvalues of interest in whatever manner is deemed
to be most appropriate. Typically, the eigenvalues of interest are those with:

—the smallest or largest magnitude;
—the smallest or largest real part;
—the smallest or largest imaginary part.

Anasazi provides the ability to perform these six sorts in the BasicSortManager
class. Other implementations of SortManager may, for example, be tailored to
account for the effects of chosen spectral transformations.

3.3.6 Anasazi::OrthoManager. The eigen-iteration implementations provided
by Anasazi are all orthogonal Rayleigh-Ritz methods where an orthonormal basis
representation is computed. Motivated by the plethora of available methods for
performing these computations, Anasazi has left as much leeway to the users as
possible. Anasazi provides two concrete orthogonalization managers:

—BasicOrthoManager - performs orthogonalization using classical Gram-Schmidt
with a possible DGKS correction step [Daniel et al. 1976];

—SVQBOrthoManager - performs orthogonalization using the SVQB orthogonaliza-
tion technique described by Stathopoulos and Wu [Stathopoulos and Wu 2002].

4. BENCHMARKING

The benefits of an object-oriented eigensolver framework such as Anasazi are many:
modularization provides improved code reuse, static polymorphism via templating
allows easier code maintenance and a larger audience through software interoper-
ability, and dynamic polymorphism via inheritance allows easy extension of capa-
bility and flexible runtime behavior. However, none of these benefits should come at
the expense of code performance. Concern over overhead has long been an inhibit-
ing factor in the adoption of object-oriented programming paradigms in scientific
computing. In this section we address this important issue by comparing Anasazi
and ARPACK on a model problem. Our interest is in addressing concerns about
the overhead of Anasazi and ARPACK, C++ and FORTRAN 77 software.

We compared Anasazi’s BlockKrylovSchurSolMgr (with a block size of one) and
ARPACK’s dnaupd, which each compute approximations to the eigenspace of a non-
symmetric matrix. Our goal was to benchmark the cost of computing 50, 100, 150
Arnoldi vectors for a finite difference approximation to a two dimensional convection
diffusion problem. Both codes use classical Gram-Schmidt with the DGKS [Daniel
et al. 1976] correction for maintaining the numerical orthogonality of the Arnoldi
basis vectors. The Intel 9.1 C++ and FORTRAN compilers were used with compiler
switches “-O2 -xP” on an Intel Pentium D, 3GHz, 1MB L2 cache, 2GB main,
Linux/FC5 PC. The results of this study can be found in Table VI.

Note that the operator application in Anasazi records approximately twice as
much time as the ARPACK implementation. This is because the Anasazi code
used an Epetra sparse matrix representation for the linear operator, while the
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Table VI. Illustrating the overhead of Anasazi as compared to ARPACK; “—” denotes a mea-
surement below the clock resolution. Each timing is the average over three runs.

Computing 50 Arnoldi vectors
Matrix-vector time [s] Total runtime [s]

Matrix size ARPACK Anasazi ARPACK Anasazi

10000 — 0.01 0.14 0.15
62500 0.04 0.09 1.20 1.17

250000 0.15 0.32 4.98 4.79
1000000 0.66 1.23 19.2 18.8

Computing 100 Arnoldi vectors
Matrix-vector time [s] Total runtime [s]

Matrix size ARPACK Anasazi ARPACK Anasazi

10000 0.03 0.02 0.53 0.55
62500 0.03 0.17 4.37 4.29

250000 0.34 0.64 17.8 17.5
1000000 1.27 2.40 68.4 67.1

Computing 150 Arnoldi vectors
Matrix-vector time [s] Total runtime [s]

Matrix size ARPACK Anasazi ARPACK Anasazi

10000 0.03 0.04 1.15 1.22
62500 0.14 0.26 9.53 9.39

250000 0.50 0.96 38.1 38.0
1000000 1.97 3.56 149 146

ARPACK implementation applies the block tridiagonal matrix via a stencil (which
would have been possible via a different choice of operator). Note however that the
operator application comprised only a small portion of the clock time in these tests.
The majority of the clock time was consumed via the orthogonalization routines
which support the Arnoldi iteration. It should be noted that while these routines
are hard-coded in the ARPACK FORTRAN 77 library, they are accessed through
a dynamic polymorphic interface in Anasazi. Regardless, the performance of the
Anasazi library in computing the Arnoldi vectors is similar to that of ARPACK.
This illustrates that a well-designed library in C++ can be as efficient as a FOR-
TRAN 77 library.

5. CONCLUSION

Our paper described the design and development of a large-scale eigensolver frame-
work using modern software paradigms. Anasazi achieves this goal by exploiting
the generic and object-oriented language features of C++. As a case study, three al-
gorithms were implemented, demonstrating the flexibility and utility of the Anasazi
framework. A benchmark demonstrates that an efficient eigensolver implementa-
tion is possible using these programming techniques.
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